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ABSTRACT
In this paper, we present a novel approach to efficient real-time rendering of numerous high-resolution voxelized
objects. We present a voxel rendering algorithm based on triangle rasterization pipeline with screen space rendering
computational complexity. In order to limit the number of vertex shader invocations, voxel filtering algorithm
with fixed size voxel data buffer was developed. Voxelized objects are represented by sparse voxel octree (SVO)
structure. Using sparse texture available in modern graphics APIs, we create a 3D lookup table for voxel ids.
Voxel filtering algorithm is based on 3D sparse texture ray marching approach. Screen Space Billboard Voxel
Buffer is filled by voxels from visible voxels point cloud. Thanks to using 3D sparse textures, we are able to store
high-resolution objects in VRAM memory. Moreover, sparse texture mipmaps can be used to control object level
of detail (LOD). The geometry of a voxelized object is represented by a collection of points extracted from object
SVO. Each point is defined by position, normal vector and texture coordinates. We also show how to take advantage
of programmable geometry shaders in order to store voxel objects with extremely low memory requirements and to
perform real-time visualization. Moreover, geometry shaders are used to generate billboard quads from the point
cloud and to perform fast face culling. As a result, we obtained comparable or even better performance results
in comparison to SVO ray tracing approach. The number of rendered voxels is limited to defined Screen Space
Billboard Voxel Buffer resolution. Last but not least, thanks to graphics card adapter support, developed algorithm
can be easily integrated with any graphics engine using triangle rasterization pipeline.
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1 INTRODUCTION

Voxel representations and rendering algorithms are one
of the most extensively studied subjects in the field of
computer graphics. For many years, voxels have been
used in the visualization and analysis of medical and
scientific data such as MRI scans [Potts04]. Nowadays,
voxels representations are widely used in many fields of
computer science, engineering and computer graphics,
with applications ranging from fluid simulation to dig-
ital sculpting tools. However, because of high memory
consumption and rendering complexity, their usage was
limited to non-real-time graphics engines.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
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the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Thanks to increased computation power of today’s
GPUs and newly developed techniques, it seems that
voxel-based representations are ready for real-time ap-
plications. Cyril Crassin was able to perform visualiza-
tion of global illumination based on sparse voxel octree
(SVO) and voxel cone tracing [Crassin11]. There are
also a few promising implementations of efficient ray
tracing of SVO [Laine10] and even object animation
and deformation in real-time [Bau11, Wil13].

Computing performance is one of the most important
measurements of real-time computer graphics algo-
rithms. SVO ray tracing implementations showed
that in this case ray tracing approach is much faster
than triangle rasterization. Ray tracing rendering is
scalable with screen resolution with the fixed cost of
rendering, independent of the virtual scene complexity.
Unfortunately, ray tracing does not have direct support
from graphic accelerators and popular graphics APIs.

In the case of triangle rasterization pipeline, it is easy
to overfill vertex shader invocations by redundant ge-
ometry data. We developed an algorithm which solves



that problem for voxel visualization with triangle ras-
terization pipeline. By selecting render candidates and
filling a fixed size buffer prior to rendering process, we
are able to limit voxel shader invocations to a defined
maximum number. Thanks to that we achieved com-
parable or even better rendering performance results in
comparison with SVO ray tracing approach. Moreover,
we gain the support of modern hardware graphics APIs
and rendering algorithms. Last but not least, the devel-
oped algorithm can be easily integrated with any popu-
lar game engines and used in video games.

2 RELATED WORK
There is a wide selection of literature on visualizing
voxel objects. Over the years, many methods of di-
rect and indirect voxel rendering have been developed.
However, only a few of them are actually using a polyg-
onal representation of the voxel structure in rendering
process. We will focus on papers that are most directly
related to our work.

One of the oldest and most citied method is March-
ing Cubes, presented by Lorensen and Cline in
1987 [Lorensen87]. The idea is to extract a polygonal
mesh of an isosurface from a 3D discrete scalar field.
Marching Cubes implementations are mainly used in
the field of medical visualizations and special effects
with what is usually called metasurfaces. There
are also a few improvements of the base algorithm,
like dual contouring [Ju02]. However, the marching
cubes approach does not generate satisfying results
in visualization of voxelized 3D objects with a lot of
textures, like normal maps, ambient occlusion maps
etc.

Splatting is one of the most studied methods of direct
volume rendering. It was originally introduced by
Westover [Westover89] The basic algorithm projects
each voxel to the screen and integrate it into an accu-
mulating render target. Using a painter’s algorithm,
it solved the hidden surface problem by visiting
the voxels in either back-to-front or front-to-back
order. Splatting is a perfect example of an object-
order algorithm in contrast to ray-casting, which is
an image-order algorithm. For years, the splatting
technique has been used to render volumes of various
grid structures [Westover89, Mao96, Westover91].
Martyn introduced a novel approach to realistic real-
time rendering scenes consisting of many affine IFS
fractals [Martyn10]. The implementation based on
splatting and hardware geometry instancing makes it
possible to achieve efficient visualization with small
memory requirements.

Another interesting work in the field of voxel visualiza-
tion is the particle-based approach presented by Juckel
and Beckhaus [Beckh07]. The authors developed visu-
alization of 3D scalar field by using a particle system.

They proposed a unique method for rendering complex
shapes as fuzzy or diffuse objects inside virtual environ-
ments. The algorithm converts surface geometry into
the voxel-like grid that specifies the appearance of the
shape. Using GPU implementation, they achieved ren-
dering of dynamic objects inside a voxelized surface
geometry. Particle systems were designed to handle
millions of simple objects perfectly characterize voxel
structures.

Although all of the presented methods propose interest-
ing ideas related to visualization of the voxels, only ray
tracing approach is able to render realistic 3D objects.
As we mentioned before, the SVO ray tracing approach
is the current standard of voxel visualization. Advan-
tages of this algorithm are scalability with the screen
resolution and fixed rendering cost resulting from a
constant ray count. We have developed a voxel render-
ing algorithm which offers similar advantages and uses
the triangle rasterization pipeline.

Using a newly available 3D sparse texture and highly
optimized ray marching approach, we perform filtering
of visible voxels. Then we fill screen size voxel buffer
with filtered voxels data. Finally, we render voxelized
objects with triangle based pipeline. We have managed
to achieve efficient rendering performance results with
a fixed rendering cost.

3 VISUALIZATION ALGORITHM
In this section, we describe our approach to visualize
voxelized objects with the use of geometry shaders and
deferred rendering. The features of our algorithm are as
follows:

• Efficient rendering of high-resolution voxelized ob-
jects.

• Support for both static and dynamic objects.
• Representation based on SVO.
• Minimization of memory consumption.
• GPU acceleration for geometry generation and ren-

dering.

3.1 Voxel representation
Voxels are simply a 3D generalization of pixels. Each
value on a regular grid stores information such as color,
normal vector or density. One of the most significant
disadvantages of voxels compared to polygons is the
memory consumption for high-resolution grids. One of
the possible solutions to deal with this issue is the use of
SVO. It eliminates empty spaces. Moreover, it gives the
hierarchical level of detail (LOD) information about the
source object. Fig. 1 presents example of SVO structure
visualization.

The simplest way to visualize a voxel is to render a
cube in 3D space. In such a representation, one would
need to store data for twelve indexed triangles with



Figure 1: SVO structure created for sample object.

appropriate attributes. We could create proper data
buffers on GPU and fill them with voxelized object data.
Unfortunately, this is not an efficient solution for dy-
namic buffers. Also, we are still facing the problem
with high memory consumption. Analyzing the ren-
dering result of voxel representation with 3D cubes,
we can realize that voxel looks same when viewed
from different angles. Thus, we can visualize voxels
as quads always faced to the viewer using billboarding
approach [Behren05, Decaudin09].

Implementation based on quads instead of cubes sig-
nificantly reduces memory requirements. However, it
means that we need to use some kind of hardware ge-
ometry instancing or geometry generation method in or-
der to render our object.

3.2 Geometry generation with shaders
Modern graphics APIs like OpenGL or DirectX offer a
few ways to implement geometry generation with GPU
programmable pipeline. The most straightforward way
to implement our algorithm is to use geometry instanc-
ing functions. With this choice, we need to store our
source quad in GPU memory and create data buffers
for billboard attributes like positions and normal vec-
tors. Geometry instancing is a very efficient method
with data streaming functionality for handling dynamic
objects. However, there is no way to control which
quads will be generated and rendered on GPU. We can
solve this by using streaming data buffers and perform-
ing calculations on CPU, but this is computationally ex-
pensive solution.

An alternative solution which we have implemented is
based on the usage of programmable geometry shaders.
In this method, we do not need quad representation
data. We store our voxelized object as a collection of
points and generate billboard quads on GPU using ge-
ometry shaders. Fig. 2 presents an example of render-
ing a 3D object based on a surface approximation with
billboards.

As a result of using geometry shaders, we gain control
on quads generation stage which, for example, gives us
the possibility to execute the back-face culling algo-
rithm or control billboards shape generation indepen-
dently.

Figure 2: Visualization of low LOD object with collec-
tion of billboards.

3.3 Smooth shading realization
In the case of 3D objects based on polygonal represen-
tation, smooth shaded visualization can be achieved,
for example, by using the Blinn-Phong normal inter-
polation model [Foley90]. Unfortunately, a voxelized
surface has no information about adjacent voxels in the
rasterization pass. This problem is typically solved by
using the volume ray tracing algorithm which can be
implemented on GPU with SVO structures. In order
to achieve smooth shaded objects, we propose a new
method based on the screen space approximation of
voxel attributes data. Our smooth shading algorithm
is based on multipass deferred rendering. In G-buffer
generation pass we render voxel attributes data to float-
ing point render targets.

The direct usage of rendered voxel attributes in the
deferred composition pass with additional information
about scene lighting produces blocky, flat shaded vi-
sualizations. In order to achieve smooth shaded visu-
alization, we perform data interpolation by a filtering
data texture with the 3x3 kernel Gaussian blur shader.
Fig. 3 presents an example of voxel normal attributes
interpolation in screen space.

Figure 3: a) Object rendered without normal attribute
interpolation b) Object rendered with normal attribute
interpolation.



3.3.1 Smooth filtering control
In order to achieve a proper smoothing for all voxelized
objects on the virtual scene, we must control the Gaus-
sian blur intensity. The objects that are closer to the ob-
server should be filtered stronger than the objects that
are far away from the observer. Actually, we need to
implement filtering control based on a similar manner
as the LOD management algorithms [Lueb02].

In the proposed algorithm, we use the Gaussian blur
with a 3x3 kernel as a voxel attribute filtering method.
The most straightforward way to achieve stronger filter-
ing is by changing the size of the blur kernel. However,
it is a major waste of GPU computing resources, espe-
cially when we implement dynamic loops in our filter-
ing shaders. We propose to use a filter shader sampler
offset in order to achieve efficient and visually accept-
able results.

The most commonly used LOD evaluation parameter
is the distance [Lueb02]. We decided to use this pa-
rameter to control the smoothing intensity. Equation 1
presents a filter intensity calculation formula.

I = max
(

0,min(
MaxI

(Dist −MinDist)2 ,MaxI)
)

(1)

where:

I = intensity of filter (sampler offset)
MaxI = maximum intensity for the closest objects
Dist = distance between object and observer
MinDist = defined minimum distance

The result of the equation must be clamped to <0,
MaxI>. Zero as a minimum value means that the object
that is far away from the observer does not need to be
filtered. The maximum intensity value must be defined
by the user depending on virtual scene construction, as
well as the minimum distance between an object and
the observer, where voxel attributes are filtered with the
maximum intensity.

3.3.2 Pixel depth based smoothing
Voxel attributes smoothing is done with screen space
shaders. We cannot calculate the distance to each object
on the virtual scene and pass it to the shader as a uni-
form value. Also, we cannot perform multiple filtering
passes in order to fit in the time requirements of real-
time graphic engines. In order to perform a distance-
based data filtering, we use depth a buffer from G-buffer
pass.

Depth buffer stores the depth of a generated pixels. In
order to perform a smoothing operation with equa-
tion 1, we need to calculate a pixel position in world
space. Using the inverse of the view projection ma-
trix, we can reconstruct the pixel position in world

space [Wright10]. By using the obtained value with a
camera position transferred to shader code as a uniform,
we are able to use the proposed equation and achieve a
proper, distance based voxel attribute smoothing.

4 SCREEN SPACE BILLBOARD
VOXEL BUFFER

In this section, we describe our approach to select voxel
render candidates from an object voxel point cloud data
in order to render the high-resolution object with a fixed
size data buffer.

In order to limit the number of voxels required for
rendering, we need to filter the voxel point cloud that
would fill the screen space data buffer. Filtering opera-
tion can be done in a wide selection of methods. Voxel
point cloud can be projected on the screen and by using
depth test, render candidates can be selected. Another
possible solution is to perform hierarchical occlusion
queries in order to find visible SVO nodes. However,
our main goal was to develop an algorithm with screen
space computation complexity which will offer compa-
rable performance results as the ray tracing. In order
to select render candidates we developed ray marching
algorithm with 3D lookup texture.

4.1 Filtering algorithm components
The smallest part of the screen is one pixel. It means
that the image covers the maximum information when
all pixels are filled by exactly one independent voxel.
However, a 3D object can be represented by much
more voxels than is needed to fill a render target. It
is the biggest disadvantage of the graphics representa-
tion with polygons. Vertex shaders can be invoked for
the data that would not fill any result image pixels or
pixel overdrawn can cause an enormous performance
hit. This problem does not occur in the context of ren-
dering with ray tracing approach. For this reason, we
decided to develop an efficient way to select object vox-
els that would fill the resulting image.

Our algorithm uses the structure which we called
Screen Space Billboard Voxel Buffer. The algorithm is
based on the three components:

• Screen Space Billboard Voxel Buffer — a fixed
size data buffer which contains voxel data used in
the rendering process. The size of the buffer cor-
responds to the render target resolution. Voxel fil-
tering algorithm selects render candidates and fills
voxel buffer data.

• Voxel point cloud — voxels data from the object’s
selected LOD. Each point stores information such
as position, normal vector, texture coordinates and
optional object id.



• Sparse Lookup Texture — 3D texture for voxel
point cloud lookup table. With ray marching ap-
proach, we get an id of render candidate voxel. Us-
ing that id, voxel data is copied from voxel point
cloud buffer to screen space voxel buffer. Thanks to
the modern graphics APIs, we can create the texture
that is much bigger than available memory and fill
only selected pages of the texture [Wright10]. Ob-
ject LOD control is managed by using sparse texture
mipmaps to store 3D lookup table for different ob-
ject LODs.

4.2 Voxel Filtering algorithm
In this section, we describe base steps of voxel filtering
algorithm. The developed algorithm is based on the 3D
sparse lookup texture ray marching.
Using ray intersection test with 3D texture, we are able
to efficiently filter voxel cloud. However, this approach
creates two potential problems. Firstly ray marching re-
quires a lot of texture sampling operations. In order to
achieve efficient performance results, it is required to
implement a few optimization techniques like Object
Order Empty Space Skipping [RezkSal09, Vidal08].
Secondly, standard 3D texture will require a lot of
the VRAM memory. We solve this problem with the
newly developed sparse texture from modern graph-
ics APIs [Wright10]. From OpenGL 4.4 specification,
AMD sparse texture extensions developed by Graham
Sellers is available by GL_ARB_sparse texture. Addi-
tionally, OpenGL 4.5 specification added a new version
of this extension with full shader side control.

4.2.1 Algorithm preparation steps
Voxel filtering algorithm can be divided into the data
preparation and execution steps. The preparation steps
are as follows:

1. Extract voxel points clouds from the required LODs.
This step can be done in precomputation pass on vir-
tual scene initialization.

2. Create 3D lookup table for voxel point cloud and
store it in sparse texture. If we need to use LOD
management of virtual scene, we store additional
lookup tables in sparse texture mipmaps.

3. Create simplified 3D object triangle mesh based.
This mesh will be used to optimize ray marching
operation. It is important to create a polygonal mesh
that vertices positions are in range of <-1.0,1.0>.

4.2.2 Algorithm execution steps
In the application rendering loop we perform algorithm
execution steps as follows:

1. Perform visibility test of the 3D object with frustum
culling and optionally occlusion culling tests. If our
object is not visible or it is occluded by another ob-
ject, the algorithm ends here for the selected object.

2. Render all visible objects simplified mesh off-
screen. For all objects, we save normalized object
space position in first render target and the object
world space position in the second render target.
The first texture will be used to perform Object
Order Empty Space Skipping. The second will
be used to handle scenes with numerous objects.
Additional object id or LOD information will be
saved in the same textures if needed.

3. Perform ray marching for all pixels using obtained
textures as input. Using 3D sparse lookup texture,
find first intersection and store voxel data in Screen
Space Billboard Voxel Buffer. It is important to clear
the current pixel screen space buffer data from the
last frame in order to optimize rendering pass.

4. Render Screen Space Billboard Voxel Buffer using
the algorithm described in section 3.

4.2.3 Algorithm conclusion and limitation

Using the fixed size voxel buffer we limited vertex
shader invocations to the fixed number. Moreover, the
voxel filtering algorithm based on 3D sparse texture ray
marching can be implemented in a very efficient way.
Thanks to that, we can render a virtual scene with nu-
merous high-resolution 3D objects with triangle raster-
ization pipeline in real-time. It is impossible without
filtering step with today’s hardware.

The fixed size voxel buffer is a particularly efficient
method in the case of high-resolution 3D objects. If
an object is represented by more voxels that can be
stored in Screen Space Billboard Voxel Buffer, the draw
call operation can be significantly optimized by limit-
ing vertex shader invocations. For example, Stanford
Bunny object on 9 level of SVO is represented by about
2.5 million voxels. After the filtering pass, we need
only about 140 thousand voxels to render the object. It
means that even with the additional filtering pass and
fixed cost rendering operation, performance results is
noticeably better than rendering object without filtering
pass.

5 IMPLEMENTATION DETAILS

In this section, we describe important implementation
details of our algorithm. We have implemented our
method using OpenGL 4.5 API with C++14 but there
are no limitations to using any other graphics interface
or programming language. All included shader source
code listings are prepared in GLSL language. Due to
the simplicity of the billboard based voxel representa-
tion, the presented algorithm can be easily implemented
and integrated into all popular game engines. The only
requirement is the support for programmable geometry
and compute shaders.



5.1 Screen Space Billboard Voxel Buffer
preparation implemenation

In this section, we describe Screen Space Billboard
Voxel Buffer implementation. We will focus mainly
on ray marching extensions and algorithm optimization
steps.

5.1.1 Screen size static vertex buffer
The base component of the developed Screen Space
Billboard Voxel Buffer algorithm is a static, fixed
size data buffer for voxels data. Due to that we can
create a static Vertex Buffer Object and fill it using
compute shaders. Using Shader Storage Buffer Objects
introduced in OpenGL 4.X API, we can bind the
Vertex Buffer Object and access it from the compute
shader. Therfor, both voxel point cloud input data
and output Screen Space Billboard Voxel Buffer can
be accessed on GPU. The layout of vertices data is
the same as vertex layout that we use in the voxel
visualization algorithm. The only potential difference
is additional object id information if our virtual scene
contains many independent 3D objects. In that case,
an additional material data array is necessary to handle
shading in rendering pass.

5.1.2 3D sparse texture
In our implementation, we used GL_ARB_sparse_texture
and GL_EXT_sparse_texture2 extension according to
test hardware specification. For a lookup table, R32UI
internal format texture was used to store voxels id
in the red channel. According to the texture internal
format, the sparse texture is dived to the specified
number of pages. We used 16x16x16 size pages for
lookup table texture. If some page is empty, GPU will
not allocate video memory for that page. On the shader
side, we can check if sampled data is committed or not.
If we cannot use the latest version of sparse texture
extensions, according to the driver specification,
sampling operation should return zeros.

5.1.3 Voxel filtering implementation
Voxel filtering algorithm was implemented with com-
pute shader. Using ray marching approach, we seek for
render candidates and then copy voxel data from point
cloud to screen space voxel buffer. In order to optimize
ray marching step, Object order empty space skipping
pass was implemented. Using a prepared simplified tri-
angle mesh, we render world and object space positions
to off-screen render targets. Using saved pixel object
space position, we can optimize ray marching by start-
ing marching very close to the object surface. Addition-
ally, we optimize ray marching for big, empty spaces.
Figure 4 presents render results of example scene.

Created 3D sparse texture and pre-pass rendering re-
sults are used in final voxel filtering step. Listing 1

Figure 4: Ray marching start position from object order
empty space skipping optimization pass.

presents main parts of voxel filtering compute shader
code. Ray marching and data preparation code have
been omitted. Additionally, in order to simplify listing,
some code was reduced to pseudocode or comments.
layout (rgba16f) uniform image2D worldSpaceTex;
layout (rgba16f) uniform image2D objectSpaceTex;
uniform usampler3D lookupTex;

struct VertexLayout {
vec3 position;
vec3 normal;
vec2 uv;

};

layout(std140, binding = 0) buffer VBO_Input {
VertexLayout vbo_in[];

};

layout(std140, binding = 1) buffer VBO_Output {
VertexLayout vbo_out[];

};

void main(void) {
int id = pix.x*size.y + pix.y;
vbo_out[id].uv.x = -1.0; // clear SSBVB

vec4 posStart = imageLoad(objectSpaceTex, pix);
if(IsEmpty(depth.a)) return;

// perform ray marching fo defined sample count
uint sample = texture(lookupTex,pos).r;
if(IsResident(sample)) {
int voxel = int(sample);
vec4 off = imageLoad(worldSpaceTex, pix);
// init SSBVB
vbo_out[id].position = vbo_in[voxel].position;
vbo_out[id].position += off.xyz;
vbo_out[id].normal = vbo_in[voxel].normal;
vbo_out[id].uv = vbo_in[voxel].uv;

}

Listing 1: Voxel filtering compute shader.

5.2 Voxel rendering implementation
The major disadvantage of voxel representations is
memory consumption. Using 3D textures to store ob-
ject data is a major waste of the VRAM. For example,
efficient usage of allocated memory in the case of
Stanford Bunny surface voxelized 2563 resolution is
about 1.5%. The usage of SVO solves this problem.
The SVO is a great method of voxel data compression
based on optimizing empty and constant spaces.
Additionally, we automatically gain an object LODs
collection.



Ray tracing is the popular method of SVO rendering.
It is efficient and produce great rendering results. How-
ever, in that method, full SVO data must be stored in the
VRAM or data must be streamed from RAM to GPU
memory. In order to easily handle the virtual scenes
with many different objects based on the SVO, we used
a different approach. Listings 2 - 4 presents a voxel
rendering pipeline with geometry shaders.

layout (location = 0) in vec3 pos;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texCoords;

uniform mat4 modelView;
uniform mat3 invTModelView;

out VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexOut;

void main() {
gl_Position = vec4(pos,1.0);
vec4 viewPos = modelView*vec4(pos,1.0);
VertexOut.normal = invTModelView*normal;
VertexOut.position = viewPos.xyz;
VertexOut.texCoord = texCoords.xy;

}

Listing 2: Voxel rendering vertex shader

layout (points) in;
layout (triangle_strip, max_vertices = 4) out;

uniform mat4 projection;
uniform mat4 modelView;
uniform vec3 size;
uniform vec3 cameraPosition;

in VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexIn[1];

out VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexOut;

void main() {
if(Backface() || EmptyScreenBuffer())

return;

vec4 center = modelView * gl_in[0].gl_Position;

gl_Position = projection * (center + size);
VertexOut.position = VertexIn[0].position;
VertexOut.normal = VertexIn[0].normal;
VertexOut.texCoord = VertexIn[0].texCoord;
EmitVertex();
// ... same operation for the rest
EndPrimitive();

}

Listing 3: Voxel rendering geometry shader

uniform sampler2D tex;

in VertexData {
vec3 normal;
vec3 position;
vec2 texCoord;

} VertexIn;

out vec4 albedoOutput;

out vec4 posOutput;
out vec4 normOutput;

void main() {
vec3 norm = normalize(VertexIn.normal.xyz);
albedoOutput = texture(tex, VertexIn.texCoord);
posOutput =

vec4(VertexIn.position,LinearizeDepth());
normOutput = vec4(norm, 1.0);

}

Listing 4: Voxel rendering pixel shader

5.3 Screen space attributes smoothing in-
tegration

With developed algorithm, we are able to render a
voxelized object alongside triangle objects and use
any triangle rasterization pipeline algorithm. Unfortu-
nately, a challenge appears when we need to implement
the screen space data smoothing for selected voxel
attributes. Using the deferred rendering pipeline we
store all frame normal data in the G-buffer. Smooth-
ing cannot affect triangle based objects because the
information will be lost.

We developed an integration method based on stencil
buffer. Using the stencil test we can exclude triangle-
based objects from voxel objects. The algorithm based
on stencil buffer is as follows:

1. Create and attach stencil buffer to the G-buffer.
2. Setup stencil to write defined value to stencil when

rendering triangle objects and a different value for
the voxel objects.

3. Attach stencil buffer to filtering pass frame buffer.
4. Setup stencil test to pass only fragments related to

the triangle objects.
5. Setup stencil test to pass only voxel objects and ap-

ply filtering shader to passed fragments.
6. Use smoothed attributes in deferred composition

pass.

6 RENDERING AND PERFORMANCE
TEST RESULTS

All depicted timings were obtained on Intel Core i5
2500K CPU with NVidia GeForce GTX 660 GPU. All
algorithms were implemented using OpenGL 4.5 API
with C++14 for Windows 10 64-bit. We used Stanford
Repository models as a test object [Stanford11]. Ta-
ble 1 presents performance, memory requirements and
test results for static and dynamic streamed voxel ob-
jects. Figures 5 - 7 presents rendering results of pro-
posed voxel rendering algorithm.

Without a doubt, today’s standard and most studied
method for visualizing SVO is based on using the
ray tracing algorithm on GPU. For that reason, we
performed performance tests and compared them with
our algorithm. As a reference, we used the „Efficient



sparse voxel octrees” implementation that is available
online [Laine10]. Performance test results are pre-
sented in Table 2. The results show that our approach
offers comparable or even better performance than ray
tracing SVO visualization.
It order to test how our algorithm performs on modern
hardware designed for computer games, we performed
additional tests on PC with Intel Core i7 4790K CPU
with NVidia GeForce GTX 980 GPU. We prepared ob-
jects voxelized in 20483 resolution. Figure 8 presents
rendering results of high-resolution objects. Figure 9
presents performance test of the scene rendered with
Screen Scene Billboard Voxel Buffer.

Figure 5: Stanford Bunny, 9 octree level.

Figure 6: Stanford Dragon, 9 octree level.

Figure 7: Stanford Lucy, 10 octree level.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a novel approach to effi-
cient real-time rendering of numerous high-resolution

Figure 8: 21 test objects, 402 million voxels, 22 FPS
achieved on 720p render target with GeForce GTX 980.

voxelized objects with the fixed size Screen Space Bill-
board Voxel Buffer. The developed method can be used
to render 3D objects represented by SVO with a stan-
dard triangle-based pipeline graphics engine. Thanks to
the limitation of vertex shader invocations and the ge-
ometry shaders usage it is possible to achieve real-time
rendering of billions of voxels. We achieved compara-
ble or even better rendering performance results in com-
parison with the SVO ray tracing approach Moreover,
our method is applicable to render both static and dy-
namic objects in real-time with the full support of mod-
ern hardware graphics APIs and rendering algorithms.

Used Object Order Empty Space Skipping efficiently
optimized 3D sparse texture sampling. However,
the current implementation is highly optimized for
rendering non-occluding objects. If we render the
scene with many occluding objects, simplified triangle
meshes causes small artifacts on the object’s edges.
We need to extend our ray tracing implementation with
additional ray traversal for occluded pixels.

An obvious step forward would be an implementation
of SVO traversal as a substitute for ray marching filter-
ing approach. We can actually use sparse textures to
store SVO. In that case, we will need to store full SVO
in GPU memory. It will increase memory requirements
and slightly impends dynamic object handling. How-
ever, voxel filtering could be faster and more precise in
comparison with ray marching approach.
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Table 1: Performance, memory requirements and test results for static and dynamic streamed voxel objects without
using developed Screen Space Billboard Buffer algorithm. Render target resolution was 720p.
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Table 2: Performance test comparison between developed Screen Space Billboard Buffer algorithm and ray trac-
ing implementation [Laine10]. SVO ray tracing times are obtained from the performance tools included in the
implementation.
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